Evaluating Persistent Memory Range Indexes: Part Two

Yuliang He, Duo Lu, Kaisong Huang, Tianzheng Wang - Simon Fraser University
GitHub Repo: https://github.com/sfu-dis/pibench-ep2

SIMON FRASER
UNIVERSITY

VLDB 2022

What? Benchmark and evaluate Optane-era Persistent Memory (PM) range indexes
Unclear performance they achieve on real PM hardware (Intel Optane DCPMM)
Utilize PiBench to experiment on five range indexes under various workloads

Why?
How?

Persistent Memory (PM)

Key features:

[
Volatile Memory
[
[
Persistent Memory

PM Partners

Hardware & Software Configuration

2 x 20-core (2-socket, 80-hyperthread) Intel Xeon
Gold 6242R clocked at 3.10 GHz, 12 x 32GB DRAM
(384GB), 12 x 128GB DCPMM (1.5TB)

Byte-addressability
Near DRAM latency

Non-volatile " Arch Linux kernel 5.14.9, GCC 11.1, glibc 2.34
Large capacity " Allocators: jemalloc for DRAM, PMDK for PM
Cheaper than DRAM = PiBench: PM indexes benchmark framework

» 8-byte key-value pair Dane
» Preload 1M keys ‘PIBQ“C"I

» 10s of operations each run

H \Vicrosoft
Hl Azure

SAPd

ST
CISCO

State-Of-The-Art Persistent Memory Range Indexes

DRAM 256B inner nodes

line 0

m x 256B leaf nodes header

DRAM inner nodes

array layer

linel

el LLE L] B
. S1)

1st 256B leaf node

Dilj- —] HIIIIIIIIIIIIIIH

m-th 256B leaf node

(a) LB*-tree

PM

fingerprint array
search layer
kv array

version lock (not perS|sted)

line 2 line 3

permutation array version (not persnsted)

data node data layer

permutation array (not persisted)

sibling _ .
pointers

DRAM

ART

//\Ieaf array

query

(read-only)
base tree

insert/delete/
update]

—¥— FPTree —A— LB*-Tree —#— ROART-PMDK —@— ROART-DCMM —*— DPTree —¢— PACTree

{ z

head invalid

partitioned

[
ptr

tail

fingerprint address

0 16

I crash-consistent I reconstructible

global version

Key takeaway:

(a) Uniform Lookup (b) Uniform Insert (c) Uniform Update (d) Uniform Scan

0

S 48 20 20 8 56 20 8 = DPTree and LB*-Tree achieve

=

- 3] 15¢ 15¢ 6r a2f 15¢ 6 best performance

3 241 10} 10} 4} 281 10} 4}

| | | | al | | = PM allocator matters (PMDK vs.
@]

S oM . . 3] =S 0] L 0 - V) me—— o 0 ROART customized DCMM)

E 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40

— # of threads # of threads # of threads # of threads # of threads # of threads # of threads m Be careful when YOu use

(e) Skewed Lookup (f) Skewed Update (g) Skewed Scan

Hardware transactional Memory

Q —V— FPTree —A— LB*-Tree —— ROART —#— HOT —< Masstree

gso 80 80 6 80 80 6 Unifying PM and DRAM indexing:
:5’28 28 28 af ig 28 af = PM indexes can also be effective
< 0 , 20} 20} 2f 20} 20} 2f for DRAM

° 0S5 a0 P 303020 OF 7020300 Cqo 20 3040 Or 03030 a0 O o35 ao 40 Crqo oo a0 | Ccompare to two representative
= # of threads # of threads # of threads # of threads # of threads # of threads # of threads DRAM-optimized indexes

(a) Uniform Lookup (b) Uniform Insert

Throughput under uniform (a—d) and skewed (e-g, self-similar with 80% accesses on 20% of keys) distributions

Mixed Workload Impact of NUMA Effect

(c) Uniform Update

(d) Uniform Scan (e) Skewed Lookup (f) Skewed Update (g) Skewed Scan =

Techniques proposed by PM
indexes may also apply to DRAM

—V¥— FPTree —i— ROART-PMDK —*— DPTree —V— FPTree —— ROART-PMDK —*— DPTree -4- PACTree-NUMA
. —A— LBT-Tree —@— ROART-DCMM —¢— PACTree @ —A— LB*-Tree —@— ROART-DCMM —¢— PACTree
n
3 36 24 20 16 20 6
o
= o7 18} 15} 12} 15} 4}
o 8f 10}
3 18} 12f 10} < al 5 2
o 9f 6| 5 3 O O TR v 0T 0
> © ™ 1020304080 11020304080 11020304080 11020304080
S 0 . 0 . 0 A i© # of threads # of threads # of threads # of threads
IE 1 10 20 30 40 1 10 20 30 40 1 10 20 30 40

(a) Read Heavy

Throughput of mixed workloads (lookups + inserts) under uniform distribution

(b) Balanced

(c) Write Heavy (a) Lookup (b) Insert (c) Update (d) Scan

No index scales well due to additional PM accesses by the directory-based CPU coherence protocol

