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What? Benchmark and evaluate Optane-era Persistent Memory (PM) range indexes
Unclear performance they achieve on real PM hardware (Intel Optane DCPMM)
Utilize PiBench to experiment on five range indexes under various workloads

Why?
How?

Persistent Memory (PM)
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Hardware & Software Configuration

2 x 20-core (2-socket, 80-hyperthread) Intel Xeon
Gold 6242R clocked at 3.10 GHz, 12 x 32GB DRAM
(384GB), 12 x 128GB DCPMM (1.5TB)

Byte-addressability
Near DRAM latency

Non-volatile " Arch Linux kernel 5.14.9, GCC 11.1, glibc 2.34
Large capacity " Allocators: jemalloc for DRAM, PMDK for PM
Cheaper than DRAM = PiBench: PM indexes benchmark framework
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State-Of-The-Art Persistent Memory Range Indexes
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Key takeaway:

(a) Uniform Lookup (b) Uniform Insert (c) Uniform Update (d) Uniform Scan
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(e) Skewed Lookup (f) Skewed Update (g) Skewed Scan

Hardware transactional Memory
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(a) Uniform Lookup (b) Uniform Insert

Throughput under uniform (a—d) and skewed (e-g, self-similar with 80% accesses on 20% of keys) distributions

Mixed Workload Impact of NUMA Effect

(c) Uniform Update

(d) Uniform Scan (e) Skewed Lookup (f) Skewed Update (g) Skewed Scan =

Techniques proposed by PM
indexes may also apply to DRAM
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(a) Read Heavy

Throughput of mixed workloads (lookups + inserts) under uniform distribution

(b) Balanced

(c) Write Heavy (a) Lookup (b) Insert (c) Update (d) Scan

No index scales well due to additional PM accesses by the directory-based CPU coherence protocol



